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Summary
N\

This paper reconsiders the problem of determining the elastostatic
field near the tip of a crack in an all-around infinite body deformed by a
""Mode III' loading at infinity to a state of anti-plane shear. The problem
is treated for a class of incompressible, homogeneous, isotropic elastic
materials whose constitutive laws permit a loss of ellipticity in the govern- .
ing displacement equation of equilibrium at sufficiently severe shearing
strains. The analysis represents a generalization of that reported in an
earlier study and, as before, is carried out for the '"'small-scale nonlinear
crack problem', in which a crack of finite length is replaced by a semi-
infinite one, and the nonlinear field far from the crack-tip is matched to
the near field predicted by the linearized theory. The methods employed
in the present paper are necessarily largely qualitative, since they apply
to all materials in the class considered. The principal feature of the
resulting elastic field is the presence of two symmetrically located curves

issuing from the crack-tip and bearing discontinuities in displacement

*The results communicated in this paper were obtained in the course of an
investigation supported in part by Contract N00014-75-C-0196 with the
Office of Naval Research in Washmgton, D.C.
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gradient and stress. R .

‘ Introduction
In a recent paper [1] we investigated the elastostatic field near

the tip of a crack under conditions of finite anti-plane shear for a very

P

special hypothetical incompressible — homogeneous and isotropic — elastic
_/

material whose constitutive law permits a loss of ellipticity of the appropriate
displacement equation of equilibrium at sufficiently severe deformations. i
The problem treated in [l] involves an all-around infinite body containing
a plane crack of constant width and infinite length. At infinity the body is
subjected to a state of simple shear parallel to the edges of the crack. The
analysis reported in [1] is carried out within the framework of finite elas-
ticity theory.
When the amount of shear applied at infinity is small, the field near
either crack-tip can be determined on the basis of an asymptotic scheme
; in which the crack of finite width is replaced by one of serni-infinite width,
and the far field is required to match the elastostatic field near the crack-

‘ tip predicted by the solution to the original problem according to the linear

g E theory. It is this ""'small-scale nonlinear crack problem!' which is studied
‘1 in detail in [1]

i The particular material considered in [1] belongs to a special class
of incompressible elastic materials. A characterizing property of this class

is that each material in it has a strain energy density that is completely

determined by the shear stress response in simple shear. The specific

member of this class used in the pilot example of [1] was chosen with two
requirements in mind: it was to allow for a potential loss of ellipticity,

and it was to permit a fully explicit solution of the small-scale nonlinear




crack problem described above.

The anti-plane shear field near the tip of a crack had been analyzed
earlier in [2] for a class of incompressible elastic materials which remain
elliptic regardless of the severity of the deformation. For such materials,
the elastostatic field is infinitely smooth in the interior of the body, although
the displacement gradients as well as at least some of the stresses are
unbounded at the crack-tip. In contrast, the example discussed in [1]
shows that a material capable of losing ellipticity will in general give rise
to a field near a crack-tip in which even the first derivatives of displacement
are no longer continuous everywhere in the interior. In fact, the principal
distinguishing feature of the results in [1] is the appearance in the elasto-
static field of two curves, issuing from the crack-tip, symmetrically
located with respect to the crack-axis, and terminating in the interior of
the body, across which stresses and displacement gradients suffer jump
discontinuities. Some of the local properties of such ""elastostatic shocks"
have been discussed elsewhere [3,4].

In the present paper, we treat the small-scale nonlinear crack
problem for a class of incompressible materials capable of losing ellipticity —
rather than for a single specific material. Although the analysis is based,
as in [1], on a hodograph transformation, the emphasis here is on qualitative
results and, in contrast to the arguments used in [1], the methods em-

ployed do not depend on explicit solvability of the equations involved.

1. Special classes of incompressible elastic materials

A homogeneous, isotropic, incompressible elastic material is
characterized by a strain energy density (or elastic potential) W which is

in general a function of the first two of the three fundamental scalar

i gt 3




invariants Il' IZ’ 13 of the left (or right) Cauchy-Green deformation tensor:

W= W(II,I Since only locally volume-preserving deformations are

2)-

admissible for such materials, one always has I3= 1. In the undeformed

configuration, Il= 12= 3; in any locally volume-preserving deformation,

1123 and 122 3.

The special class of incompressible materials with which we shall

be exclusively concerned consists of those for which W is independent of IZ:

W:W(Il) , 1,23 ; W(3)=0 . (1.1)

1

At infinitesimal deformations, the shear modulus for such a material is

given by
b =2W(3)>0 , (1.2)

where the prime indicates differentiation. One can show that the Baker-

Ericksen inequality reduces to

w’(11)>o for 11>3 (1.3)

for materials of this kind.

Suppose that a body is composed of a material with the strain energy
density (1.1), and assume that the region occupied by the body in its un-
deformed state is a cube. Choose a rectangular cartesian coordinate frame
with its origin at one vertex of the cube and axes collinear with three of

the edges. Consider the simple shear in which a particle with coordinates

X1, Xy, Xy in the undeformed state is carried to the point with coordinates

yl,yz,y3, where




y1=xl, y2=x2, y3=x3-l>k.x2 e (1.4)

the nonnegative constant k is the amount of shea.r.1 In simple shear2

the invariant I1 is given by

I.=3 il (1.5)
and the shear stress T325T23 is related to the amount of shear by

T 3=umszmwa+k5 , k20 . (1.6)

32~ "2

The response curve in simple shear is the graph of 7(k). From (1.1),

(1.5) and (1.6) it is clear that W(Il) is determined by (k) according

to the formula

./11—3
W)=  r(kidk , I
0

123 - (1.7)

The simplest case for which (1.1) holds is that of the Neo-Hookean

material:

.
W(Il)- 2(11-3) " (1.8)

for which

T(k)=pk , k20 . (1.9)

]The deformation (1.4) is of course locally volume-preserving.

2See Section 2 of [2].

——
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A second example is furnished by the ''power-law materials'' introduced in

[2]; here

» n -
= Ty B T 15
W(Il)- 55 1+n(11 3! -15, Iz3, (1.10)

where U, n, b are positive material constants. The response curve in

simple shear in this case is described by

n-1
T(k)=u(1+1§-k2) T Y (1.11)

Figure 1 illustrates the response in shear for various values of the ""harden-
ing parameter' n. A power-law material hardens or softens in shear ac-
cording as n>1 or n<1l. The case n=1 corresponds to the Neo-Hookean

material.

The special material considered in {1] has a strain energy density

given by
(
Sy .
2(Il 3) , 3sL}=4 ,
W(Il)=< (1.12)
_ 3K _ayi/4
> +Zu(Il 3) - 1124 i

S

where u is a positive constant. The corresponding response in simple

shear is:

(k) = (1.13




S S—

Figure 2 displays the graph of (1.13). Note that 7'(k) suffers a jump
discontinuity at the peak corresponding to k=1 (or Il=4)' and observe
as well that 7(k)-~0 as k-om.

In the present paper we shall be concerned with a subclass of the
materials characterized by (1.1). This subclass contains all materials

satisfying the following conditions:

(i) The strain energy density W satisfies (1.1), (1.2) and (1.3),
and the shear-stress response T7(k) given by (1.6) is three
times continuously differentiable for k=20,

(ii) 7Tk)>0 for O0sk<l , 71)=0 ,

(1.14)!
tk)<0 for k>1 , *™1)<0
(iii) -7(k)<kt(k)<7t(k) , k>0 . (1.15)
(iv) As k- ,
T(k)~7 _+hk™1 e (1.16)
where the constants Tt h and ¢ are such that
T 20 , h>0 , 0<e<l . (1.17)2

@

According to (i), we have 7(k)~uk as k=0. Condition (ii)

asserts that the response curve in simple shear rises monotonically to

1Condition (i) and the first three of the four requirements in condition (ii)
automatically imply 7%(1)<0. We exclude the possibility T”(1)=0 only
for reasons of simplicity.

2It may be confirmed that (1.16), (1.17) are consistent with (1. 15).




a maximurn1 at k=1, then declines to the limiting value Teo We set

T~ T(1) (1.18)

evidently T is the maximum stress attained in simple shear.

The right half of the double inequality in condition (iii) holds trivially
for k=1 by condition (ii), but for k<1 it represents an additional restriction
and asserts that the ""shear modulus'" t(k)/k at an amount of shear k is a

decreasing function of k. This implies that

kasﬂk)suk , Osk=s1 | (i.19)

which in turn requires that

nT . (1.20)

The left half of the inequality (1.15) follows from (1. 14) for 0<k=1,
but not for k>1. It requires that kt(k) be increasing and hence that

T

r(k)>—km for k>1 . (1.21)

Finally condition (iv) permits the limiting value of 7(k) as k-
to be either positive or zero and restricts the rate of approach to this limit.
The power-law materials described by (1.11) satisfy conditions (i)~
(iv) provided 0<n<1/2, if one takes b=n/1-2n, so that the maximum in
the response curve is at k=1. In this case one has ‘rm=0 , h=u(l - Zn)l'n,

e=2n and Tm=u[z(1-n)/(1-2n)]“’l.

lThe location of the maximum at k=1 is a matter of convenience only.

S
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The material on which the example in [1] is based, although broadly
similar to materials in the subclass described by conditions (i) - (iv) in
that its shear stress response curve rises to a peak at k=1 and then declines,
does not in fact belong to that subclass. It fails to be smooth enough to
satisfy condition (i), and violates the strict inequality on the right in condition

(iii) for 0<k<1.

2. The small-scale nonlinear crack problem

Let R be the three-dimensional domain consisting of the exterior
of a plane infinite strip of width 2c. Introduce cartesian coordinates

Xy, X x3 in such a way that this strip, which represents a crack, lies

2
in the plane x5= 0, the x3-axis being parallel to the edges of the crack
and the origin midway between the edges. The cross-section & of ®
in the plane x,=0 is evidently the exterior of the segment -c=< x)sc of
the xl-axis.

Suppose that the interior of a body of incompressible material
characterized by (1. 1) occupies the domain ® in an undeformed configuration,
and suppose further that, in the absence of body forces, the solid is subjected

at infinity to a simple shear parallel to the edges of the crack. : The dis-

placement components u, must thus sai:isfy2

“a=°(l) 5 u3=kx2+o(1) as xﬁxﬁ~oo " (2.1)

where the nonnegative constant k is the amount of applied shear. The

1'I'his is the loading case known as '""Mode III' in the terminology of fracture
mechanics.

ZLat'm and Greek subscripts have the respective ranges (1, 2, 3) and (1, 2),
repeated subscripts are summed, and a subscript preceded by a comma
indicates differentiation with respect to the corresponding x-coordinate.
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deformed faces of the crack are to remain free of traction.

For materials governed by the strain energy density (1.1), it is
shown in [2] that the field equations and boundary conditions associated
with the crack problem described above are consistent with the assumption
that uaEO and u3=u(x1,x2) on R , corresponding to a state of anti-plane
shear with out-of-plane displacement u(xl,xz). Moreover, the three-
dimensional boundary-value problem is reducible, as shown in [2], to the

following two-dimensional problem for u on the cross-sectional domain §:

[w'(xl)u'a]';o on & , (2.2)

with
11=3+17ul?‘ : I?L‘Zzu’au'a ; (2.3)

and
u(xl,x2)=kx2+o(l) as x x =@ , (2.4)
u,z(xl,Ot)=0 for -c<xl<c i (2.5)

It is also shown in [2] that the components of true stress Tij satisfy

T, =T =2W'(Il)u A A =2W'(Il)|Vu|2 " (2.6)

Sar @3 33

TR =0 (2.7)

with I1 given by (2. 3).

When the Baker-Ericksen inequality holds, as we assume here,




S

33

it is possible to show that the differential equation (2. 2) is elliptic at a

solution u and at a point (xl,xz) if and only if
' r 2y 2
W3 +k°)+2k“W" 3 +k°)>0 , k:qu(xl,xZH . (2.8)

In view of (1.6), this condition for ellipticity is equivalent to the assertion
that the response curve in simple shear must have positive slope at an
amount of shear equal to the.magnitude of the local displacement gradient
V’u(xl,xz). It follows that (2. 2) can never suffer a loss of ellipticity if the
response function 7(k) for simple shear is monotone strictly increasing.
On the other hand, for the class of materials satisfying conditions (i) - (iv)
at the end of the preceding section, (2.2) will lose ellipticity whenever
!Vu(xl,xz)l z1. In particular, for the power-law materials characterized
by (1.10), (1.11), a loss of ellipticity is possible only if n<1/2.

In the presence of a potential loss of ellipticity, it is natural to
seek the solution of the boundary-value problem (2.2) - (2.5) in a class

of functions whose smoothness is less than that which one would otherwise

naturally demand. In fact we shall merely require that u be continuous
and have piecewise continuous first and second partial derivatives on §. <,
In addition u is to be bounded inside any circle centered at a crack-tip.
Finally, the limits Vu(xl, 0+) must exist and be continuous for -c<xl<c.

The preceding smoothness requirements allow for the possibility
of finite jump discontinuities in Vu — and hence also in the stresses Ty =
across curves in £, It is necessary to stipulate that across such a curve

J, W’(Il)aulan shall be continuousl, where I1 is given by (2.3) and

1'I'his is equivalent to the requirement that the tractions be continuous across
# , which in turn is demanded by equilibrium. See Section 1 of [1] and
Section 3 of [3].
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du/dn is a derivative of u normal to #.
For small values of the amount of applied shear k , one would
expect that, away from the crack-tips, the solution of the foregoing boundary-

value problem would be well-approximated by the solution of the corresponding

~v

L linearized problem. ! In fact, arguments sketched in [1] and [2]2 suggest
that, for small k, an approximation to the solution of (2.2) - (2.5) which is
uniformly valid near the right crack-tip is obtained by replacing the domain

~

£ with the domain &£ exterior to the nonpositive x,-axis (see Fig.3), re-
quiring (2.2) to hold on r , enforcing the free surface condition (2.5) on
the semi-infinite crack -oo<x1<0 > x2=0 , and matching u and its first
derivatives at infinity to the corresponding near-field quantities calculated

from the exact solution of the original problem according to the linearized

theory. This leads to the small-scale nonlinear crack problem in which

one seeks a solution u of (2.2) on ¥ subject to the boundary conditions

u'z(xl,Ot)zo 2 xx<0 (2.9)

and the matching conditions

\ u~k(2cr)1/zs'm . W

o

" l~-kc(2cr)-l/2'sin% e 2~kc(2cr)’”2cos% : % (2.10)

’ ’

i as r—=o0 , -w<Osw

/

lUpon linearization, the boundary-value problem (2.2)-(2.5) passes over to
the elementary problem for Laplace's equation corresponding to irrotational
flow of an inviscid incompressible fluid past a flat plate at a 90° angle of
attack.

2See also Rice [5].
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Here r,5 are polar coordinates at the crack-tip (Fig.3), so that

xl:rcose ; x2=rsin6 , r20 , -ws@sw . (2.11)

Furthermore, u is to satisfy relaxed regularity conditions strictly analogous
to those imposed in connection with the original crack problem.

When referred to the dimensionless variables

§d=xa/ck2 4 ?=1‘/ck2 . E=u/ck2 . (2.12)

the boundary-value problem (2.2), (2.9), (2.10) assumes the following non-

dimensional form in which k does not appear explicitly:

[W'(3+{?ﬁ|2)ﬁ,a]'a=o on & , (2. 13
G,Z(’—‘I'O*)zo g xl<0 X (2.14)
a~(2'/%in g,
u,l~-(2r)-l/zsin% ; u'2~(2r)-1/2cos% : > (2. 15)
as r-o J

The foregoing small-scale nonlinear crack problem was solved in
[2] for the limiting elliptic case n=1/2 of a power-law matefial governed
by (1.10), (1.11), (see Fig.1), and in [1] for the :material described by

(1.12), (1.13), (Fig.2).

1Subscripts preceded by a comma are now understood to indicate partial
derivatives with respect to the dimensionless coordinates Ea , and V stands
for the gradient operator with components 8/83':01
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3. An algorithm for the construction of solutions to the displacement

equation of equilibrium.

A formal algorithm for the construction of a solution to the small-
scale nonlinear crack problem (2.13)-(2.15) can be generated with the help
of a hodograph transformation, in which the first derivatives of U are
introduced as new independent variables, and one is led to an explicitly
solvable linear boundary-value problem in the hodograph plane for the
Legendre transform of W . For materials which remain elliptic at all
deformations, the mapping between the physical and hodograph planes
is one-to-one, and the formal procedure indeed produces an exact solution
which is infinitely smooth on $ . This analysis is carried out in detail
in [2] for the limiting elliptic case n=1/2 of the power-law material
(1.10).

In [l] the formal hodograph scheme is applied to the boundary-value
problem (2. 13)-(2.15) for the case of a material defined through (1. 12).

In this instance, a loss of ellipticity occurs and is accompanied by a break-
down in the invertibility of the hodograph transformation. As shown in [1],
even in these circumstances the formal hodograph procedure can be used
to find solutions of the differential equation (2.13). These can in turn be
combined to construct a solution of relaxed smoothness to the boundary-
value problem.

We shall not repeat the description of the hodograph transformation
here; instead we merely cite from [1] the resulting formal algorithm and
analyze it for incompressible materials governed 'By (1.1) and satisfying

conditions (i) - (iv) stated near the end of Section 1. Let (k) be the

shear-stress response function for such a material, and define functions

\




1B

P and Q by
@
r
P(p)= | -~ , Q)= -pP'e) , 0>0 , 3.1}
0 t-T(t)
where
T(t)=T(t) /1 (3.2)

According to the hodograph scheme, the formal solution u of the boundary-

value problem (2.13)-(2.15) is given implicitly by

G(El,§2)= -pQ(p)cosep , >0, -n<§sw , (3.3)

where for given (21,322) or (¥,8), p and ¢ are to be determined from

X,=rcos € =P(p) - Q(o)cosch ;

1
(3.4)

§2=?sin9 =-Q(p)sinpcose , p>0, Osousw

It can be shown that for an elliptic material, (3.4) are uniquely
invertible: for each T>0 and each 6 in [--rr,-rr], there are unique values
0=p(7,8), v=0(T,8) with p>0 and 0<psm such that (3.4) hold. Substitu-
tion of these values of p, ® into (3.3) furnishes the solution u.

For the materials of interest here, (3.4) will in general fail to be
uniquely invertible for certain values of (EI,FEZ). The first step in con-

structing a solution to the small-scale nonlinear crack problem (2. 13)-(2.15)

lNote that (1.16) assures the convergence of the integral in the definition P.
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consists in determining the number of roots (p,y) of (3.4) for each value
of (:—:1, xZ).
A geometrical version of this issue is arrived at by observing that

(3.4) may be written in the equivalent alternative form

x1=?cos 8 =a(p) - b(p)cos 2p

izz? sin 8 =-b(p)sin2¢p , > (3.5)

Osepswt , p>0

’

where
a(e) =P(p) - 3Q(c) , b(o)=3Q() . (3.6)

From (3.1), (3.2), (1.6) and (1.3) it follows that b(p)>0 for £>0, so
that (3.5) represents, for each fixed p>0, the parametric equations of |
a circle T'(p) centered at §1= a(p) , §2=0 with radius b(p). The cartesian

equation for this circle is

Fe): [%)-a(e)1%+%5=b%0) . (3.7)

Thus for given values of 3':1 and §2 » (3.4) has a solution (0,,0v,) with
pPy>0, 0<gp,<m , if and only if the circle TI(p,) passes through the

‘ point (':ZI,EZ). Moreover if (p,,0,) and (p,,0,,) satisfy (3.4) for given |

(SEI,EZ) , then ¢,=0,, . Thus the number of admissible roots (p.,0,) :
of (3.4) coincides with the number of circles T'(p) which pass through the

E ‘ ' given point (El,iz) or, equivalently, with the number of roots Px of
el

{3.7).
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Let ’E* be a subdomain of & on which Py is a twice continuously
differentiable positive function of (:’:1,22) satisfying (3.7). Note that for

such a Pu s

3(0*) 'b(p*)silsa(p*)+b(0*) ’ (3'8)

since the left and right members of these inequalities are the abscissas

of the intercepts of T'(p,) with the :—cl-axis. Define Ou through

a(py) +blo,) - X, hid

cosy,= -sgnX, Fite ) , Oso.sm .| (3.9)l

One shows easily that o,.,¢, satisfy (3.4) on 'E* . Further, if ¢, is

twice continuously differentiable on &, , the function u defined on E* by

U(x),x,) = -0, (%), %,)Q0 (X, X,))cos 9, (%), X,) (3.10)

can be shown by direct calculation to be a solution of the partial differential

equation (2.13) on ‘E* .
In the next section we investigate the roots o, of (3.7) and their

~

domains of definition §_ .

4, Geometry of the circles TI(p)

In order to investigate the roots p of (3.7), we need some properties

of the functions a(p) and b(p) which, according to (3.7), determine the
circles T(p).

From the definitions (3.6) and (3. 1) it follows that

lsgniz is one if 3‘:2>0 , zero if Tc2=0 and minus one if 3':2<b.
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Qo

dt 1

a(p) = r i
5 t57(t) 207 (0)

» blp)= ,» 220, (4.1)

207 (p)

= _ = e/ —
al(:)zﬂuﬂ bo) = - £7(2) +7(p) S5

2057 %0) " 2%y ' e
and hence in particular that
alp) - blp) = =2 | o>0 . (4.3)
0T (p)
Invoking (1.15), one finds from (4. 2) that
a'lp)<0 , bp)<0 , p>0 , (4.4)
while (4.3), (1.14) lead to
>0 , O<p<l ,
a’(p) -b(e)4=0 , p=1, (4.5) l

<0, p>1

We shall also require the asumptotic properties of a(p), b(g) for ;‘
large and small p. The asymptotics for large k of (k) given by (1.16), |
(1.17) lead via (4.1) to the following estimates for a(p), b(p):

If 'rm>0: as p-@,

N

g 2 whe 1
a(o)~ —_— -

2T P 2 L !

oo Z'roo(Z-e)p
r (4.6)
1 uh 1

b(p) ~ 52— = -

Z'rcop 2_',2 pZ-e

S
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If  =0: as p=o0
(0 6)

H(2-€) 1 o A @
B(D) s Zhe pe » b(p) 2h pc o (4 7)

From (1.6), (1.2), (3.2) one finds the behavior of T(k) for small

k to be given by

TR ™ kodk” ok ka0 ,
(4. 8)
d=-2W"3)/u
Ruling out a degeneracy, we shall assume
1
d>0 . (4.9)
Using (4.8), (4.9) in (4. 1) leads to
a(p)~ -dlogp , b(p)~-—13 as 0=-0+ . (4.10)

20

From (4.6), (4.7) it may be noted that in either of the cases ‘rm>0

or Too=0 , one has
a(p)=-0 , b(p)=0 as c-=® , (4.11)
while from (4. 10) it follows that
a(p)=+oo , b(p)=+o as p=0+ . (4.12)

On the other hand, (4.10) also shows that

1'I’he fact that d20 is a consequence of (1.15).
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a(p)-b(p)=-00 as p=0+ . (4.13)

From (4.4), (4.12) and (4.11) one infers that a(p) and b(p) decrease
monotonically from +o at o0 =0+ to zero at g =+w. In particular, both
functions are positive for 0<p<oo.

According to (4.13), (4.5) and (4.11), a(p)-b(o) increases mono-
tonically from -o at p =0+ to a maximum at p =1 and then decreases
steadily to zero at p=+o0 (Fig.4). Since the maximum value of a(p) - b(o)

is necessarily positive, one has
a(l)-b(l)>0 . (4.14)

such that 0<p.<1 and

Finally it is clear that there is a unique number %9 0

a(oo)-b(co)=0 ’ (4.15)

The circles T(p) of (3.7) are centered at }—:l=a(:) 5 ?:Z:O , have
radius b(p) and intersect the El-axis at §l= a(p)-b(c) and at
§1=a(o)+b(c). As 0 increases from zero to one, the center and right

'}El-intercept of T(p) more from X,=+0o to the left, while the left

1
il-intercept moves to the right. By (4.15), the left intercept of I'(p

o)
is at the origin. The circle TI(l), which plays a major role in the analysis
to follow, is centered at T:l= a(l) , ’:'cl:O , has radius b(l)=u/2‘rm , and
intersects the El-axis at positive values of El.

As p continues to increase from unity, the center and right
'il-intercept continue to move to the left, and the radius continues to

decrease, but the left intercept §l= a(p) - b(p) now moves to the left as

well (Fig.5). For very large values of p , I'(p) is centered very slightly

Ak
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to the right of the origin and has a small radius.

Two circles T'(p) corresponding to values of p both of which are
less than one do not intersect, but this is not necessarily the case when
both values of p are greater than one. It is thus not surprising to find
that the subfamily of circles TI'(p) for which 521 possesses an envelope.
This envelope, which is of decisive importance in the study of the roots
¢ of (3.7), is a curve which is tangent at each of its points to one of the

circles T(p), p=1. To find this curve analytically, we first define
bt = 2, =2 .2 e
F(p;X =[%,-a(@]+x;-b%() , >0, -w<X <o . (4.16)

The envelope then consists of those points {21,22) for which there is a

p >0 such that

0 and iE(:;il,i?_):o . (4.17)

F(D;xl.x2)= 5o

Substitution from (4. 16) into (4. 17) leads directly to parametric equations

for the envelope <£:

1/2
£: X;=e(p), §2=:t[e2(p)] , ol o, (4. 18)

where the functions el(s) ’ ez(:) are defined for all p>0 byl

1

equations for £ , their values for 0<p<1 will be needed later.

Although only the values of el(p) * ez(p) for p21 enter into the parametric
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_a(pla’(e) - b(p)b(p) W '
el(o)- a’(p) i -
> (4.19)
2
ez(m:[—u“—)]—?_[a'(o)-b'(.o)][a’(p)+b'(o>] . 0<p<m
a’(o)

Only those circles TI'(p) for which 021 participate in the formation of the
envelope because, by (4.4), (4.5), ez(p)ZO for p21 but ez(p)<0 for
0<p<l1. Thus ?c'z as given in (4.18) is real only for p21.

The envelope £ is symmetric about the il-axis, consisting of an
upper and a lower branch as indicated by the sign alternative in (4.18).
From (4.4), (4.5), (4.19) and (4. 14) one finds that el(o)>0 for p21,
so that £ lies in the half—pla.nel 3120. Moreover, el(l) =a(l) - b(l) and
e?_(l) =0, so that each branch of £ 'begins' when ¢ =1 at the left
':Zl—intercept of I'(l). A more detailed inspection of el(p) . ez(o) near
p =1 shows that £ has a vertical tangent at p =1 and its radius of curva- |
ture there is b(l). Thus £ osculates with T'(l) at the left El-intercept
of this circle.

As p-+00 , the two points on £ which correspond to p tend to

the origin, as one sees easily from the asymptotic behavior of e1(p) and

7 _=0. In fact, it can be shown that the upper and lower branches of £

ez(c) for large p deducible from (4.6) or (4.7), according as 'roo>0 or 7 ’
= |

approach the origin with vertical tangents as p=o , provided Too>0.
If T 0, the upper and lower branches of £ are asymptotically tangent
as p=+00 to the lines §Z=i%e(l - e)'l/zil , where, according to

(1.16), ¢ is the material parameter controlling the rate of descent of the

shear-stress response curve at large amounts of shear.

l'I.‘he origin (which would '"correspond'' to p =) is taken to be a point of £.
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From (4.19) one finds that

e'l(c)za’(o)c(p) , eé(p):Zb(o)b’(p)c(p) . P20 , (4.20)

where

>
("E\‘_,;. bb‘a” bb”

i ; (4.21)
2 el Y
By (4.18), (4.20), the slope diz/dil of #Z therefore satisfies
dx "
X 2 _ bo)b(e) >0 for every p such that c(p)#0 . (4.22)

%2 d?:l - allp)

Thus on the upper (lower) branch of £, EZ is a monotone strictly increasing
(decreasing) function of :—cl on any arc of £ which includes only points for
which c(p)#0. At values of p for which c(p)=0, £ has a cusp.

By (4.21), (4.1), (4.5), (4.3), (1.18) and (3.2), one has

a(ty= —BUL [oxy) - p51)) = 2 (4.22)
[b(1)] m

so that by the last of (1. 14),
c(l)<0 . (4.23)

It then follows that c(p)<0 when p is near unity, and hence, by (4.18),
(4.20), (4.4), X, atfirst increases along £ as p increases from p=1.

But as o - , the corresponding points on £ tend to the origin, and thus

3':1 is ultimately decreasing. One concludes that c¢(p) must change sign

at least once for 1<p<o. If the material is such that for all 0>0,

only one such change of sign occurs, then there is a unique number pc>l
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such that

c(p)<o0, 0<D<cc;cwc)=0:ccl>0, o>pc 3 (¢24f

-

f When (4.24) holds, one may infer from (4. 20) that el(?) and ez(p)
increase monotonically with o for 0<p<oc , attain maximum values at
=P and thereafter decrease monotonically with ¢. The asymptotic
behavior of el(p) ’ ez(a) , which can be determined from (4.6) or (4.7),
(4.10) and (4.19), is such that el(o) and ez(c) both tend to - as

0 -0+, and both tend to zero as p—=+o. The zero of el(o) lies between

p=p

0 and p=1. The graphs of el(p) and ez(o) are thus as sketched in
Fig.6.

In the analysis to follow, it will be assumed that the material under
consideration satisfies the '"one-cusp condition'' (4. 24). e At the end of
this section, we shall discuss the interpretation of this condition in terms

of the shear-stress response curve of the material. In the final section,

we shall comment briefly on the effect of relaxing the restriction (4.24).

Suppose (4.24) hoids, and let D(p)=0 be the distance from the
center of the circle I'(1) to the points on £ corresponding to p. A

direct calculation gives
D(z)D’(s) =a'(p)lalp) -a()]e(r) , »21 , (4.25)

so that D’(p)<0 for l<o<pc i D'(pc)=0, and D’(p)>0 for p>p. Thus

as p increases from p =1, the corresponding point on, say, the upper

1The asymptotic behavior of c(p) as ¢ =0+ guarantees that c(p)<0 for
0 near zero,

Hence, each branch of # has only one cusp.
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branch of Z moves closer to the center of I'(1) until it reaches the cusp, | 4
where D(p) has a minimum. A The point then moves away from the cusp —
which lies inside I'(1) — in such a way as to increase its distance from the
center of I'(1), eventually crossing T (1) and approaching the origin.

By a similar argument, one can show that all points of £ except
the origin lie in the interior of the circle 1"(00) through the origin.

When (4.24) holds, it can be shown that there are no points of
inflection on those portions of the upper or lower branches of £ for which
1<p <P but the remaining part of each branch has at least one point of
inflection. It is also possible to prove that there are no double points on
Z when the one-cusp condition holds.,

A qualitative sketch of £ is shown in Fig.7 for 'roo>0 (Case A)
as well as for Too =0 (Case B).

One can show that the envelope £ is precisely the set of points
(EI,EZ) at which the Jacobian determinant of the physical coordinates with
respect to the hodograph coordinates vanishes. It is therefore analogous :
to a "limit line" in gas dynamics.

We have not found a satisfactory interpretation of the one-cusp
condition (4.24). One can show that c(p) vanishes at p =oc>l if and
only if the curve representing the square of the shear stress T in simple
shear as a function of the square of the amount of shear p has a point of
inflection at p =pc . The presence of more than one cusp on each branch

of the envelope £ would therefore correspond to 'terracing' in the

lOne can show that £ is tangent to I"(oc) at the cusps.

ZSee §105 of [6].

- — -
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declining portion of the latter curve (c>1).
It can be verified that the power-law materials (1.10), (1.11) for

0<n<1/2 satisfy the one-cusp condition (4.24).

5. Elliptic and hyperbolic solutions of the differential equation

We turn now to the question of the number of roots 0>0 of (3.7),
or equivalently, of the number of positive zeros of F in (4.16) as a

function of p .

First, suppose that 2'1:3?2: 0, and observe from (4. 16) that
F(p;0,0) =[a(c) +b(o)][ale) -b(e)] , p>0 . (5.1)

Since a(p)+b(p)>0 for p>0 and a(p)-b(p) vanishes only at po (see

(4.15)), it follows that the only zero of F(p;0,0) is 99

Next, assume that §§+§§>0. From (4.11), (4.16), one sees that

e e
F(+oo,xl,x2)-x1+x2>0 z (5.2)

while (4.10), (4.16) yield

F(O+;Tzl,§2)=-oo : (5.3)

Thus for any given (T{l,iz) , there is at least one positive zero p of

F(p;':'c'l,:_cz). Note that this result does not depend on the one-cusp condition

(4.24). i
In order to investigate the number of zeros of F, it is convenient to

record first some properties of this function. From (4. 16), (4.19) one

obtains
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(D;’—:lfz)='Za’(o)[§1'el(p)] » D>0 » 'm<§a'<a) (5.4)

Thus by (4.4), the graphof F vs. ¢ for given (El.iz) has a horizontal
tangent when p is such that T:1=el(o). One sees from Fig. 6,which depends
on (4. 24), that when Els 0, there is precisely one such horizontal tangent —
located at a value of p between zero and one. If 0<§l<el(oc) , two
horizontal tangents occur at, say, © =51 < =62 with 51<oc<52 . When

51>1 , both 3, and 52 correspond to points on £ which are intersections

1
of # with the vertical line through the point (3:'1,}':2). When fl<l , only
52 refers to a point on £ with this proper't:y.l If §l=e1(cc) , there is a
horizontal tangent in the graph of F only at p =0 and if §1>cc , there
are no horizontal tangents.

Equations (5.4), (4.16) and (4. 19) show that, at a horizontal tangent

of F,

AE R) =Rl 5 OF 5= = )=
F(pnxlpxz)—xz'ez(P) » ap (Qoxlpxz)"o . (5-5)

From the graph of ez(_:) in Fig. 6, it is clear that e2(0)<0 if p<1, so
that F(5;§1,§2)>0 at a horizontal tangent for which 8<l. If 21 in : |

(5.5), then F(0;%,,% is positive, zero or negative according as the point |
1 P g p

2)
(il, |§2|) lies above, at or below that point on the upper branch of the
envelope £ which corresponds to f£. The latter point is a point of inter-
section of £ with the vertical line through (21,3':2).

From (4.16) we observe that F(I;SEI,:_:Z) is positive, zero or negative

according as (:'cl,iz) lies outside, on or inside the circle T(1l). Note that

1Recall that £ contains no points corresponding to values of p<1 (see (4.18)).
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for each fixed p and El' F(p;il,’:':z) is a monotone increasing function
of X5 for x2>0.

The preceding considerations lead to the following conclusions
concerning the dependence of the number and location of the zeros of F

on the point (21,3{'2):

Table 1
Number of Number of
Location of (il,iz) zeros of F in (0,1) zeros of F in (1, o)
outside £, outside T (1) 1 0
outside £, inside TI(1) 0 1
inside #, outside TI'(1) 1 2
inside £, inside [(1) 0 3

One observes in particular that, at any point ﬁl,iz) which lies outside £,
there is a unique zero of F , while at any point (El,i?_) in the interior of
#£, there are three distinct zeros.

If, at a given value (3201,3202) of &l,iz) ; 5 is a zero of F , the
implicit function theorem assures the existence of a function o*(')'cl,?cz),

defined and smooth in a neighborhood of (:‘col,?c‘;_), such that

-3 Tc(i.?coz . Thus differentiability of p, can break down at (321,22) only

if (:_cl,:_cz) coincides with the point on the envelope £ that corresponds to
o . Since there are no points on £ corresponding to values of p<1, no such
breakdown in smoothness can occur if g<1.

We now define two functions Py s P, ON the ﬁl,iz)-plane as follows:

P lﬁl,'i'cz) =the smallest zero of F(p ;.Tcl,?cz) " (5.6)
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pz(xl,xz) =the largest zero of F(o;xl,xz) . (5.7)

Since F has only one zero for points &1,22) which lie strictly outside
< , one has 01595 in the exterior of £. From (5.1), (4.15) one has
;1(0,0) =p2(0,0) =pO 2 _01 is continuous at the origin, but 02 is not. In
fact, one has _CZ(EI,O)-CO as xl-O- , while CZ(EI,O)-H'OO as x1~0+ !
Also,

=p =.0c if Gl,xz) coincides with either cusp, and 019 Fap

T2
are continuous at the cusps. One can show that °1 suffers jump discon-
tinuities at all points on that arc of the envelope £ which joins the cusps
by way of the left St'l-inte rcept of I'(l), except for the cusps themselves.
Except for points on this arc of £, 1 is three times continuously differ-
entiable. On the other hand, 0, has jump discontinuities at all points

of that branch of #Z which joins the cusps via the origin, the cusps ex-
cluded, and 05 has continuous third derivatives elsewhere. Both Py ey
are even functions of EZ for each X, -

One infers from the foregoing discussion that

ol=c2<l outside both £ and I (1) ,

(5.8)
pl=oz>1 outside # but inside T(1l) ,
ol>l 5 pz>1 inside both £ and I(1l) ,
(5.9)
po<pl<l d p2>1 inside £ but outside TI'(1) ,
and
po<pl<pc ’ oz>oc.inside - (5.10)
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As §2~0 for fixed El , one shows easily from (5.6), (5.7) and (4. 16)

that 91(3{'1,0) and pZ(Tcl,O) satisfy

a(0)(%},0)) - b(p(%),0) =%, for -@<F sa(l)-b(1) ,

1
(5.11)
a(0,(x),0)+b(p,(x;,0) =%, for a(l)-b(l)<%x;<o ,
a(p,(X),0)-b(p,(%,),0)=%, for -0<X;<0 ,
(5.12)

a(az(il,O))'O'b(oz(El,O))=§l for 0<:_{'1<03

Bearing (3.9), (3.10) and the second of (3.6) in mind, we now define

functions GI(SEI,EZ) E EZ(EI,EZ) for all &1,22) by

<

1/
U =sgn¥,0 | Zb(oa)[a(:yi +blo ) -%,1}

{51 13)1 L
a=1,2 , no sum E
I
Note that u;=u, on the exterior of the envelope £ . From (5.11), (5.12), ‘
{5.13) one sees that |
#0 for -oo<§lSa(1)-b(l) ’
ﬁl(il'o+)-ﬁl(xl’ 0') (5. 14)

=0 for a(l)-b(1)<§l<m »

where

1Since b(pa)>0 , the fact that Tcl lies between the Tcl-intercepts of I‘(pa)

assures that the radical in (5.13) is real.
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#0 for -w<X%,<0 ,

1
uz(x1,0+)-u2(?cl,0-) (5.15)
=0 for 0<321<oo
Thus 'Gl is continuous at points on the X -axis to the right of the left

T;l—intercept of T(1) but discontinuous across the crack T{ISO ; ?:2:0 ;

as well as across the segment 0<X,<a(l)-b(1) of the X, -axis ahead

of the crack. In contrast, 62 is discontinuous across the crack but

remains continuous at all points of the ?{l-axis ahead of the crack-tip.
These observations, together with the remarks following (5.7) concerning
the loci of points of discontinuity of °q and 05 permit the determination

~

of the maximal domains of smoothness for Gl and GZ . Let &, consist
of the set of all points in the domain 7 which lie neither on the line
segment 0<§15 a(l)-b(l), 322:0 nor on that arc of the envelope £ which
joins the two cusps by way of the point X,=a(l)-b(l), SEZ: 0. Similarly,

let :‘:2 be the set of those points in % which do not lie on that arc of £
which joins the two cusps via the origin.l Then T, is three times con-
tinuously differentiable on :’3& . Moreover, one can show by direct cal-
culation based on (5.13), (4.16) (and the fact that 0y » 0, are zeros of
F) that ﬁa satisfies the differential equation (2. 13) on :‘fd . In the process

of carrying out this calculation, one finds that

a(p _)+blp )-%,1/2 o
r [* (24 1| on Q

L e Z5(5,) i - (5.16)

it is understood that the cusps themselves do not belong either to :51 or

to £2.
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El-a(paHb(pa)]l/Z e
on

U, 2" poz[ Zb(Da) Ag)ar 2 5.17)

and hence that

|96, | =¢, on T (5.18)

In view of (5.8), (5.9) and (5.18), one concludes that the differential
equation (2.13) is elliptic at the solution Txl at those points of E‘Jl which lie
outside T (1) and hyperbolic in that part of Il which lies inside T(l). Simi-
larly, (2.13) is elliptic at the solution GZ at those points of ?‘:2 which lie
outside both £ and T(1) (ﬁz and Gl in fact coincide there), but hyperbolic
at any point of 752 which lies either in the interior of I'(l) or in the interior
of L.

One has pl(?cl,'.\_:z) =02(3'c1,§2) outside £ and as T-= /Tzi’+§§ -0,

their common value tends to zero. In fact, from (4.10), (4.16), (5.6) and

(5.7) it follows that

o](il,iz)=c2ml,§2)~2‘”2?'”2 A Tt (5.19)

and hence from (4.10), (5.13) and (5.19) that

1/25.

in 4 . (5.20)

(1[5
N
w
e
1
8

Thus 'dl and ﬁz satisfy the condition at infinity (2.15) posed as a part of

the small-scale nonlinear crack problem.

From (5.17) with a=1, one obtains

S ———
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x,-a(p,(x,,0))+b(p,(x,,0))|1/2
1 1'71 M | ] (5.21)

E1,2:(-’21'0‘*)':"1‘3"1'0’[ Zh(s (%, 0))

But according to the first of (5.11), the numerator in the bracket in (5.21)

vanishes for §1<a(l) -b(l) , so that

Gl'z(il,w):o : -oo<§l<a(l)-b(1) : (5.22)

Thus, in particular, U, satisfies the free surface condition (2. 14) along the

1

1 2 1
crack” -0<%x,<0, X

1 =0.

2
Neither Til nor HZ alone can serve as a solution of the small-scale

nonlinear crack problem, since neither is smooth enough throughout T,

In the next section we shall show how they can be pieced together to construct

the desired solution,

It may be remarked that a third solution T, of (2.13) differing from

3

El and ﬁz only at points inside £, could be constructed with the help of
that zero of F which, for (EI,EZ) inside £, lies between ch and o5 -
We shall not need this solution in what follows, and so we do not investigate

, its features here.

i 6. Solution of the small-scale nonlinear crack problem.

’, Here we construct a continuous, piecewise smooth solution u of the

| boundary-value problem (2.13)-(2.15); u will coincide with Gl on a subset

‘ of ¥ and with EZ on the remainder of ¥ . We first observe that, because
of the discontinuities in El and 'Ez , u will be required to coincide with ﬁl

at tho'se points of ¥ which lie near that branch of £ which joins the cusps

1T]'xe solution EZ also has vanishing normal derivative at X,=0x for

2
-oo<§l<0.

&
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by way of the origin, while u and 32 will coincide near the remaining
branch of £, aswellas in the vicinity of the segment O<Tcl<a(l) - b(1)

of the X,-axis. This suggests that we attempt to ''match" Gl and GZ

1
across two as yet undetermined curves o and J° (Fig.8) that are sym-

metrically situated with respect to the El-axis, start at the origin, termi-
nate at the cusps, and otherwise lie wholly within the interior of £. This
matching must assure the continuity of T and of the traction across the

two curves to be found. We shall show that there are unique ''shocks" ¥
and # with the desired properties. As either of these curves is traversed,
T and its tangential derivative remain continuous, while the normal deriva-

-

tive of U jumps ~ despite the prevailing continuity of traction across '

and # .
Momentarily taking for granted the existence of /" and o, let
’.‘\":'(1) stand for the set of those points in 7. which lies strictly outside the

: s .
closed curve formed by #, & and that branch of £ which connects the

7(2)

cusps by way of the point Elza(l) -b(l), X,=0 (Fig.8), while | consists

~(2 . a =
of the interior of this closed curve (x‘.( ) is shaded in Fig.8). Define u on

T by first setting

rﬁl on ?-"“' .

u =< (6.1)
EZ on 3(2) §
\

and then extending the definition of U to all points of J+, # “(except the
origin) and the right branch of £ by continuity. It is clear from (5. 20)

that U satisfies the condition (2.15) at infinity and from (5. 22) that it
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also satisfies the boundary condition (2. 14) on the crack faces. Finally,
U is smooth and satisfies the differential equation (2.13) on ) except at
points of #tand #7 We shall ultimately show that T remains bounded
as r—0.

It therefore remains only to establish the existence of curves o o
and o with the required properties. We consider o'+on1y; the existence
of # “then follows from symmetry.

Suppose for the moment that there is such a curve J+, and let

(?:1,22) be a point on it. Since o’+1ies on or inside Z, one has from (5.10)

that

Lo = e e +
0<o @, X200 _, c,(xpX,)20 (x,%,) €4 (6.2)
Since U as given by (6.1), (5.13) is to be continuous at (Tcl,?{z) on J+,

it follows that

]1/2 ]1/2 +

cZ[ZbZ(a2+b2-§l) =pl[2b1(a1+b1-§1) on o« , (6.3)

where we have set

ba= b(oa) » 3,7 a(pa) ’ aszl,2 . (6.4)

Since 0y » 02 are zeros of I'(o ;21,3('2), one has from (4. 16) that

g o2 2 2k o2 +
(?:l-al) +x2--b1 " (il-az) +x2-b2 on o (6.5)

If we define g by
glo) =0%b(p)alp) +b(e)] , 2>0 , (6.6)

) o




the result of squaring both sides of (6.3) and solving for §1 may be ex-

pressed as

£>° 8

- -

%, = on o, (6.7) !
] b ~2-b pz !
g e |
where ‘
!
ga=g(pa), (T (6.8) )
Using (6.7) in the first of (6.5) yields
g,-8 2 |
byb s =ByPy
Substitution from (6.7), (6.9) into the second of (6.5) then leads after some
algebra to the conclusion that the values of B and P, on the shock must i
be related by l
1
i |
#(py,0,)=0 on o (6.10) | |
i
|
where & is defined for all ol>0 ; p2>0 by ?
|
$0,00) =D 000 4B o gyt b ) = bopiia +boe 8, +b.) (6.11)
) Ll 1140 (e R (S Sl e M e [t ]
{
(recall (6.4)).
The issue of establishing the existence of the solution (6. 1) of the
1Since we are interested only in pl>0 ¥ oz>0 , (6.7) is equivalent to (6.3)
and leads to no extraneous results.
ﬂ
|
g
~——— ke
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small-scale nonlinear crack problem is a matter of the reversibility of
the argument leading to (6.10), (6.11). We shall establish below the

following six claims:

(1) for every o4 E(oo,oc] , there is a unique root Q?_:?Z(:l)zcc
of (6.10);

(ii) setting 0,=7,(p;) in (6.7), (6.9) supplies a parametric rep-
resentation of a curve o with tracing parameter ¢ 1}

(iii) as 01=Ppt the corresponding point on i approaches the
origin, while as ol-oc- , the associated point on n’+ moves
to the upper cusp;

(iv) except for its endpoints, /% lies in the interior of &£ ;

(v)  (6.3) holds on ' (except at the origin), so that T as defined
by (6.1) is continuous except at the origin;

(vi) the traction is continuous across 7’ (except at the origin).

In order to analyze the shock equation (6.10), we require a further
property of b(p) as well as some results pertaining to the function g(»)

defined in (6.6). From (4.1), (4.2) and (4.4) one finds that

[0%b(0)]’= -p2%a%0)>0, o>0 , (6.12)

so that :Zb(o) is an increasing function of p . Since by (4.10), i

ozb(s)-ol/Z as p—=0+, it follows that
pzb(p)>-%, 6>0 . (6.13)

The asymptotic behavior of g(p) can be determined from (4. 10),
(4.6) or (4.7), and (6.6) as

g(o)~-——12 as p=0+ , (6.14)
40
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and
P
glp) ~=> as p=to if T_>0 , (6.15)
2T
while
WL
g(c)~-—2—p as p=+o if roo:o . (6.16)
2h"¢

The material constants T h and ¢ first appeared in (1.16); note that
0<e<l .

From (6.6), (6.12) and the first of (4.19) it further follows that
'3 i rZ /. i X /
gilp) = -p a(..‘)el(..l), o>0 . (6. 12)

According to (6.6), (6.14), (6.17), (4.4) and the graph of el(:) in Fig.6,
g(r) must decrease from +om at o =0+ to a positive minimum at that
value of p at which el(:-) vanishes, thereafter increasing steadily with
¢ . According to (6.15), (6.16) g rises to a finite limit as ¢ =+o0 if
T >0, but tends to +o0 as p=to if T_=0.
fo s} o

If 1 >0, there is a unique number p >0 such that

© o

2

8(p,) = 8(+) = =5 . (6.18)
an

With the help of a cclculation too long to be included here, it is possible to

show that

Pa<Pg * (6.19)
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C'O being the zero of a(p)- b(g)} (see (4.15)). Thus

2
- 9 1 -
glp)<g(w)=—=5 for p2p, if 7 >0 . (6.20)

2T
©

A sketch of the graph of g(p) is shown in Fig.9.
We now turn to the function Q(pl, pz) introduced in (6.11), from

which it is immediately noted that

2p,,0))=0, 8o, 0,)=-8(p,,0,) - (6.21)

We are interested in the behavior of Q(pl,voz) as a function of p_,

0<p,<m , when p, is held fixed at a value not less than po. A straight-

7 "1
forward calculation based on (6.11), (6.12) and the first of (4.19) furnishes
the identity

0%

b
Z 802

=l = o )
(Olroz)"az[\*(plppz)'é(plppz)] » ‘-'1>0 ’ P’2>0 ’ (6.5—2)

with ¥ given by
¥ (D4, 0] = (By0 2 = Byple s (0,) 4+ g1~ 6.>0, p,>0 (6. 23)
01°°P2 2 = UeR ISl TE T8y v BTV s Pa ’ s

where g = glo,) » g is defined by (6.6), el(p) is given in (4.19), and we
have set a’2= a'(pz). From (6.23), (6.22), and (6.21) it follows in particular

that

¥(py,py)=0 , p,>0, (6.24)

and
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p).00=0 , 0,30 . (6. 25)

802
Differentiating (6.23), (6.22) with respect to P, » setting 0,0, , and

making use of (6.12), (6.17), (4.20) yields

825
—7(01.31)=0 ; p1>0 ¥ (6.26)

8;2

Finally, a further differentiation gives

2
iy -ol@))’
3(p1'01):_T_—c1 » (6.27)
8;}2 1

where ai:a'(:vl) » €)= c(pl) , and the function c is defined in (4.21). In

view of the one-cusp condition (4.24), {6.27) and (4.4) furnish

f<o , 0<p <pc

1
3
s i o
. 3("1'°1)ﬁ“° R (6.28)
Ha

>0 , p>p
L ¢

Making use of (6.21), (6.25), (6.26), (6.28) and the appropriate Taylor

approximation for &(p 1’ 92) , one can thus determine the local behavior

of Q(pl,pz) as a function of p, near the zero p?_:pl:

o(pl,pz) decreases with P at °2=°1 if 0<pl<pc s
(6.29)
Q(pl,oz) increases with Py at p,=p, if p1>pc

From (6.23), one finds that
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¥ (p,sf5)

pfa) 2 e

apz -(bz,z-blpl)azc2 F pl>0 . p2>0 . (6.30)
where c,= c(pz) and c(p) is given by (4.21). Invoking the one-cusp condition
(4.24), one sees that the graph of VY(p 1’ pz) Vs p, has horizontal tangents

only at Po=P, and Py= pc . Differentiation of (6.30) with respect to Py

gives, at 92=Pl ’

2

a7y o Rt .
5 Z(DIIPI)--pl(al) Cl ’ pl>0 » (0.31)
Pa
so that, by (4.24),
r>0 0<p,<p
i 1 e
& e ¢ 56
8 2(p1)p1)<- ’ pl'pc ( . )
P

<O D P f
k I e

Next we consider the asymptotic behavior of (p 1,pz) and ‘?(pl, pz)

as’ p2-+oo and as pz-O+ for fixed plzpo . It follows easily from
(4.6) or (4.7) and (6.11), (6.23), (4.19), (6.6), (6.18) that as Fp=,

one has

for v >0:
©

§(p1.pz)~—2:%—(al-bl)pz>0 if py1>pg » (6.33)
[0 0]

é(po,p2)~g(po)-g(pm)<0 (6.34)

Y(pl.pz)~g(pl)-g(pw)<0 if p120g (6.35)
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for T =07:
oo}

PR 2-¢ .
u2 2(1-¢)
u® - Hiee) .
‘Y(pl.pz)'v-z—h—z-(?—)pz <0 if p1>0 s (6.38)
-€

On the other hand, the small-p2 behavior of ¢ and ¥ can be deduced

with the help of (4.10): as p2—0+ -

1 Zal
P2
1 2 1 {
Y(Dl.P2)~'2-c;4"(blpl-E)>0 : pl>0 . (6.40) x
2

We shall now make use of all of the foregoing properties of ¢ and
¥ in order to describe the graphs of W(pl,pz) and @(pl,pz) as functions
of PR 0<p2<oo , with £y fixed, posplspc . Suppose first p0<pl<pc .
From (6.40) one sees that Y(pl,pz) decreases from <o at Po= 0+ until
it reaches its zero at pz=pl (see (6.24)), at which point it has a horizontal
tangent, according to (6;30). As Py increases from Py Y(pl,pz)
increases, reaching a maximum at p = Pe thereafter declining steadily.
If 'roo>0 7 ‘t’(p.l,pz) approaches a finite negative limit as Pp= +o , by
(6.35). If 1'00=0, (6.38) shows that Y(pl,pz)—-oo as p,=+o. The

graph of ‘i’(pl,pz) vs. p, for po<p1<pc is shown as the dashed curve
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in Fig. 10,

According to (6.22), the graph of §(p1,p2) vs. p, can have a
horizontal tangent only where it crosses the graph of ‘P(pl,pz) VS. py. By
(6.39), (6.22), Q(pl,pz) decreases from +oo at p2=0+ , remaining less
than ‘i’(pl,pz) until it vanishes, together with Y(pl,pz) , at Pr=Py s
where there is a horizontal tangent (see (6.25)). By the first of (6.29),
§(pl,p2) is negative and, by (6.22), continues to decrease as Py increases
from Py until its graph crosses that of Y(p 1,pz) with a horizontal tangent.
As P continues to increase, &(p l,pz) then increases monotonically to
+o (see (6.33) or (6.36)), crossing the pz-axis once and only once at
92=,,2(El). The graph of ¢(pl,p2) vs. p, for po<pl<pC is shown as
the solid curve in Fig. 10.

For plzpo or plzpc , it is easily shown that Q(pl,pz) vanishes
if and only if Po=fy s whether Too>0 or roo=o .

Thus for p0<plspc , there is a unique root p2='p‘2(pl)2pc of

(6.10), whether T >0 or 7 =0, and claim (i) is established. A detailed
study of the behavior of Fz(p 1) shows that 'Ez(p 1) decreases monotonically

as ¢, increases, and that

pz(pl)-+oo as py=pgt
(6.41)
B’Z(pl)~pc+ as py=p -

In fact, the asymptotic behavior of Fz(pl) as p, -p0+ can be shown to be

given by
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2 2
T (po) - TCI)

-1 y
W (pl-po) if v >0 . (6.42)

Here p0<l is the unique zero of a(p)-b(p) (see (4.15)), 7(k) is the
shear stress1 in simple shear at an amount of shear k , and L is the
ultimate stress in simple shear.

If 1 =0, (6.42) must be replaced by

Qo
1
2
s PoT (gl |° "
R~ Ll | Pited ¥ s BpRgt » TR0 5 A

here h, ¢ are the material constants introduced in (1.16), (1.17).

If one sets p.,=32(pl) in (6.7), then X, is given as a function of

1
° for po<p15pc . In order to show that the same substitution in (6.9)

furnishes X, asa function of Py it is first necessary to establish that
the right side of (6.9) — with p2=52(p1) — is positive., Let
gz' gl 2

2
Z(pl’pz)_bl- ——2———2-a1 ’ p1>0 i p2>0 8 (6.44)
bap2-PyP)

If Prs Py satisfy (6.10) with & given by (6.11), it is possible to show that

e e
b.b,p.p
e 12712 3 |
Z(pl,pz)- > 22(31-a2+b1-b2)(a1-a2 b1+b2) . (6.45)

When 1.32>p1 , one has by (4.4) that a -a2+b1-b >0, so that the sign of

1 2

lNote that 7(k) is the dimensional shear stress (as distinguished from T(k)
which is nondimensional).

e
5
“ny
W

P g - sy = ” k
5 R I T AR 7o Mol ™~ -—
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Z(p 1,pz) is the same as that of a)-a,- bl+ b2 , provided (6.10) holds. To
determine the latter sign, we first use (6.11), (6.6), and (4.19) in (6, 23)

to show that, if F1:Pp satisfy (6.10), then

B w )-b—z-(' BB - bpo) - Bap ol -2y B 5.} (6.46)
Hogeoglagr e Ralighar VR - B T '
But according to Fig. 10, ‘Y(pl,ﬁ'z(pl))<0 . Moreover a'2<0 by (4.4),
2 2
LS 1 =79 - > i >
a_ b2<0 if Py pz(pl)ch>l by (4.5), and bzpz blp1 0 if PPy
by (6.12). When these facts are used in (6.46), one concludes that
a- az-bl+b2>0 when pzz'ﬁz(pl) , and hence that Z(pl,iz(pl))>0 ;
50<: 1 s Po It then follows that the right side of (6. 9) is positive when ¢ 2=Ez(p l),
and hence (6. 7), (6. 9) with p2=32(p 1), p0<p ls Pe supply parametric equations
ofacurve #' for X,>0 (or o if X,<0), thus establishing claim (ii).
Equation (6.41) shows that Ez(p1)~+oo as py=pyt, and thus by
(4.6) or (4.7), (6.15) or (6.16), and (6.7), it follows that X, =0+ on o'
as p, -po+ . A similar argument, making use of (4.15) as well, shows
- 8
that x2—0+ on # as p1~p0+.
On the other hand, as pl"pc- , (6.41) asserts that pz(pl)—pc+ ;
(6.17), (6.12), (4.19), (6.7) and L'Hospital's rule then show that
% ~e (> ) on #". It then follows from (6. %) and (4.19) that %,-=ve,(p )
on o' as PP~ Thus (':':1,322) in o approaches the upper cusp
) of £ as P1=Pc" and claim (iii) is confirmed.
Suppose that ﬁl,iz) is an interior point of /" corre sponding to
Py p0<pl<pc . Then (6.10), (6.11), (6.7), (6.9) and (4. 16) imply that
P1 and Fz(pl) are both zeros of F(p;il,:—iz) , so that (El,iz) is a point

at which F has more then one zero, By Table 1 of the preceding section,
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(3':1,?(2) cannot lie outside £. I (Tcl,:—zz) were on £, then Py and
'p'z(pl) would both be double zeros of F (see (4.17)), which is easily
shown not to be the case. Thus (Tcl,?:z) lies inside £, as asserted in
claim (iv).

It can be shown directly that (6.10), (6.11), and (6.7) — with
FZ:EZ(QI) » Pg<P SR, ~ imply (6.3), and hence by (6.1), (5.13), T is
continuous at all points of P except the origin. This establishes claim (v).

To verify that the traction is continuous across the shock, it is nec-
essary first to determine the slope of s . If one sets p2=52(p l) in (6.10)
and then differentiates with respect to p |» one can determine B"Z(p 1) in
terms of Py pzziz(p 1) with the help of the appropriate properties of a(p),

b(p) and ¢§(p 17 F To find the slope of -’+ , it is then only necessary to

2) ’
differentiate (6.7) and (6.9) (with p2=32(p1)) with respect to Py and sub-
stitute for E'z(pl) the value determined as outlined above. The resulting

formula for the slope can be simplified by using (6.10), (6.11) to eliminate

PysPy where they appear explicitly. The final form for the slope is then
found to be
dax b,-b (a,-a,+b,+b,)(a,-a,+b . +b,) 1/2
s S Lesdoliang i -ar Lf
d:-:l bl+b2 (al-az- bl+b2)(al-az+b1-b2)

+ =
on o , py=P,lpy), Pp<P <P, - (6.47)

We note in passing that the monotonicity properties of a(p), b(p) and

pzb(p) established in (4.4), (6.12) permit one to conclude that the slope
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of o is positive at each of its interior points.

The vector N with components

2-1/2 2-1/2
N1=-m(l+m ) 2 N2=(1+m ) ¥ (6.48)

in which m given by (6.47), is a unit normal vector of i, By (2.6),
(2.7), the only nonvanishing component of traction on a curve in T with

normal N is the X,-component, which is given by

3

N.=2W'3 + |75| )5 e (6.49)

t=73p B

By (1.6), (3.2) and (4.1), this may be written as

¢ = U

= —a——70 N, , p=|VT] . (6.50)
20%b(p) P P

The components 3’1 4 E’ 2 of VU are discontinuous across ¥ i , being
given by (5.16), (5.17) and (6. 1) on the side of " associated with Py’
a=1,2 . The limiting values of '6’1 - ﬁ' , on the pa-side of J+ can be
expressed entirely in terms of Pps Py by substituting for 3'{1 in (5.16),
(5.17) from (6.7). Since N, N2 are expressed solely in terms of ¢ 1°°2
by (6.48), (6.47), the limiting tractions t)» t, on the two sides of s
can then be found in terms of P1ePy alone by (6.50), In the resulting
formulas for t and t,, P 1’ P, appear explicitly as well as in the argu-

ments of a and b. It is possible to use the shock condition (6.10), (6.11)

to eliminate the explicit appearance of p 1'P2 - When this is done, one

1Note that one also requires the fact that al-az-b1+ b2>0 as established

in the discussion following (6.46).

ke
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. . A s +
finds that t.=t, on R , confirming the continuity of traction across o

1 2

and thus establishing claim (vi).
Geometrically, the shocks -’+ and o are the loci of points of
intersection of the circles I'(pl) and 1"(,:;2) as p, varies from o to
P Pp from +o0 to Pe in accordance with the relation p2=pz(pl) .

These circles are shown schematically in Fig.8.

7. The field near the crack-tip. Discussion

The local behavior near the crack-tip of the shock #% and of the
displacement and stresses can be determined from the global solution to the
small-scale nonlinear crack problem constructed in the preceding section.
We consider first the case of a material for which the ultimate shear stress
in simple shear is positive: TOO>O . To determine the shape of /" near
the origin, it is easiest to proceed from the expression (6.47) for the slope

m . Since p,=Pyt and p,=tco on /" as the origin is approached, one

0

can determine the limiting value of d"iz/di as §1-O+ from (6.47) by

1
using the asymptotic results (6.42) and (4.6), along with (4.15), (4.1),

(4.3) and (3.2). This leads to

d:-:z Rt
lim - 2 P o [ (7.1)
X, =0+ ™ /‘z“"z =
JTn =T
0 e o)

where o= 'r(po) , and, by (4.15), (4.1) and (3.2), Po is the unique nurmber

in (0, 1) such that
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r‘oo

l dp. . 1 1
A - T pgTleg) .55
pop T(p) 0

From (7.1) it follows that " is asymptotically straight at the origin:

x ~——il on > o as x,=-0, v >0 . (7.3)

Thus #' and o  subtend a limiting angle 290 at the origin, where

2 2 . =1/2
e = T -
tan %0 Too( 0 'rm)

To find the limiting value of u(il,iz) as (21,3&2) approaches the

origin from within the domain '5(1) (i.e. from the elliptic side), one uses

(6.1) and (5.13) with a=1 and lets pl-p0+ . Making use of (4.15), (4. 1),

(3.2) and (7.3), one obtains

lim G(%,, %) =i;“—

T=-0 & 0

as ’E*O,e(leisw,'r >0 , (7.4)

where the ambiguous sign is chosen to be the sign of 8. Note that (7.4)
confirms that G is discontinuous at the origin.

In order to find the limiting value of U at the origin from the hy-
perbolic domain ’5(2) , it is necessary first to observe that the second of

(6.5), together with (4. 6), implies that

- M cosB =
pz(T:l,xZ)~T = as T 0, ‘roo>0 : (7.5)

lOne can use (4.15), (6.6), the second of (4.1), and (6.20) with p =Pp

to show that 7.>7
0 @

e R S
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Appealing to (6.1), (5.13) with a=2 , letting T-0 and invoking (7.5),
one is led to
; . > -
_lxm u(xl,xz)- = sin§ , 8056 80 ; 'Too>0 ” (7.6)
r-0 fo )
A graph of the limiting value of @ vs. 8, for 'roo>0 , is shown in Fig. 11l.

Note that (7.4), (7.6) together show that T is bounded near the crack-tip,
as originally required.

The corresponding limiting values of the stresses Ty c€an be found
from (1.6), (1.16), (2.6), (5.16)-(5.18) in an analogous way. The cylindrical

\ i R =T 8+ i
components of shearing stress T =75,C0S T3zsm8 and

"Gz: -f3lsin8 +732cos 8 turn out to satisfy
=6
0 , ,0<e<60
Seate r >0 (.7
e rz Qo
r—-0
iTOCOSB ; 90<|8!Sn .
4
T Oslel<90
lim 7, = w0 . (7.8)
720 8% | e
: 8 |
L'rolsmel g V0<16,Sw ;

The ambiguous sign in (7.7) is opposite to the sign of 8. Graphs of these
limiting stresses (Too>0) are given in Fig. 12, in which 90 was chosen

to be greater than w/4.

1A more refined calculation shows that Trz=0(‘r') for —60<6<60.
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The axial stress T33 is given asymptotically by

(}._1 cos 9

T » -8

0<e<eO

T33~Y as T~0, >0 . (7.9)

LTOpO » eo<le|Sn

The limiting behavior as ¥=0 of u, 7__, Tgp and T is quali-

33

tatively similar to the small-T behavior of these quantities as determined

rz

in [1] for the small-scale nonlinear crack problem in the case of an in-
compressible material governed by the shear stress response (1.13). For
the displacement and the shearing stresses, this similarity can be seen by
comparing Figs. 11, 12 of the present paper with Figs. 7, 8, 9 of f1].
Apart from the presence of the discontinuity in stresses associated
with the shock, the above limiting values of displacement and stress also

bear a qualitative resemblance to corresponding results obtained in [2] for

the '"softest' of the elliptic power-law materials (the case n=1/2 in (1.11)).

It is possible to confirm directly the continuity of displacement and
traction across s near the origin by making use of (7.3), (7.4) and (7.6)-
(7.8).

For the case of a material with ‘Tm=0 , similar — but more in-
volved — arguments which we shall not give here lead to the appropriate
crack-tip approximations. In this instance, the shocks st and o are

tangent to the Rl-axis at the origin according to the formula

1/¢

§2~%6<§\‘ elez /e o5 a0+ om Sir 0. (7.10)
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Here *ozf(po) , with o determined by (7.2) , and h, ¢ are the material
constants governing the shear stress response at large shear (see (1.16));
recall that h>0, 0<e<1 .

The limiting value of the displacement ﬁ(il,iz) at the origin from
within T} (i.e. from the elliptic side) is again given by (7.4), except
that now 90=0 , since /7 and oS are tangent to the il
On the other hand, if the origin is approached along a curve which lies in

(2)

-axis at the origin,

the hyperbolic domain &'/, (7.6) must be replaced by

1/e 1/e-1/2 ) /
- 7t o i, [} - =g
T~ 1/2:‘%\ 21 1/e/ 2 ecosG+R(9)\ sin & 1/2? (1-¢)/¢
. [cos8+R(8)]
hieo S e ) £
as (x],xz)-(0,0) inside : TOO:o s (7. 103
where
I 2 )2 1- )-1/2
R(e)zgl%cos e-—(z—e (7.12)
e A |

With reference to (7.12), one must note that R(6) is real for

'cose|22(1-e)1/2

/(2 -¢), and only small values of l@l are relevant in
(7.11), again because #" and #  are tangent to the El-axis at the origin.
It can be shown from (7.10), (7.11) that U remains bounded as the
origin is approached from the hyperbolic domain along any curve that re-
mains between o and o . Since according to (7.4) such boundedness
clearly prevails for any approach to the origin from the elliptic side, one

concludes once again that U is bounded near the crack-tip.

The choice 'roo=0 , h=u, ¢=1/2 in (1.16) furnishes precisely the
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large-k behavior of the material described by (1. 13) and treated in [1].
Although this material is not included in the class of materials studied in
the present paper, principally because of the lack of smoothness at k=1
in its shear-stress response curve (Fig.2), it is nevertheless true that
setting ¢=1/2, h=u in (7.10), (7.11), (7.12) reduces (7.10), (7.11)
precisely to the corresponding results in [1].1 This reflects the fact
that crack-tip behavior within the hyperbolic region is determined entirely
by the large-k behavior of the shear-stress response curve. It is also true
that, if one uses T7(p) as given by (1.13) in (7.2) to determine Po sets
?0=~.(p0) ey and uses this in (7.4), the result coincides with the limit-
ing value of T from the elliptic side at the origin as determined in [1].
Crack-tip approximations for the stresses in the case TUO=0 re-
main the same as for the case TOO>O insofar as limiting values from the
elliptic side are concerned. Approximations appropriate to an approach to

the crack-tip from the hyperbolic domain for To-0 have been found but

will not be given here. They, too, reduce to corresponding results in [1]

when €=1/2, h=u.

As a point on the shock approaches the cusp, the shock 'weakens"
in the sense that discontinuities in the displacement gradients tend to zero.
At the cusp itself, one can determine the field quantities in terms of
o™ the value of p at which c(p) in (4.21) vanishes. A typical formula

is that for the displacement at the cusp:

1

See (4.1), (4.2) and (4.9) of [1].
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7 -1/2
u = -r_ 2 T__ 1\| : 1
Yeusp™H 1 pCT(pc)_dp<p e i : (7.13)
P=pP
c
i 1/2
The largest resultant shearing stress (730730) occurs at

points of the circle TI'(1) and has the value T (see (1.18)). The axial
stress 754 becomes infinite as the crack-tip is approached from within
the hyperbolic domain.

The small-scale nonlinear crack problem appears to be substantially
more complicated if the one-cusp condition (4. 24) fails to hold. If there is
more than one cusp on each of the branches of the envelope £, it can be
seen that there must be at least three on each branch. The situation
sketched schematically in Fig. 13 would seem to be a possible one as regards
an envelope £ with three cusps per branch. Among the possibilities sug-
gested by Fig. 13 is one in which the shocks s and o are forked, as
indicated by the dashed lines.

In [3], [4] it was proposed that elastostatic shocks should be subject
to a certain "'dissipation condition' analogous to the requirement of increas-
ing particle entropy across a gas-dynamic shock. For the shocks constructed
in [l] in connection with the small-scale nonlinear crack problem for the
special material (1.13), it was verified that this dissipation condition was
fulfilled when the amount of shear prescribed at infinity is a quasi-statically
increasing function of time, corresponding to loading (as distinguished from
unloading). We have not investigated the corresponding issue in the more

general setting of the present paper.

Recall that (1.15) implies d/dp(r(p)/p)<0 .
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FIGURE |. RESPONSE CURVES IN SIMPLE SHEAR FOR
POWER-LAW MATERIALS.
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FIGURE 2. RESPONSE CURVE IN SIMPLE SHEAR FOR
THE SPECIAL MATERIAL GOVERNED BY EQ. (I.12).
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